

Cambridge International AS & A Level

MATHEMATICS (9709) P3

TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS

Chapter 9

Complex numbers

 $317.\ 9709_s20_qp_31\ Q:\ 10$

(a)	The	complex number u is defined by $u = \frac{3i}{a+2i}$, where a is real.
	(i)	Express u in the Cartesian form $x + iy$, where x and y are in terms of a . [3]
	(ii)	Find the exact value of <i>a</i> for which arg $u^* = \frac{1}{3}\pi$. [3]
	•	

(b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z-2i| \le |z-1-i|$ and $|z-2-i| \le 2$. [4]

	idole
(ii)	Calculate the least value of $\arg z$ for points in this region. [2]
•	

(a)

 $318.\ 9709_s20_qp_32\ Q{:}\ 8$

Solve the equation $(1 + 2i)w + iw^* = 3 + 5i$. Give your answer in the form $x + iy$, where x and y are real. [4]
~0

(b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z-2-2i| \le 1$ and $\arg(z-4i) \ge -\frac{1}{4}\pi$. [4]

319. 9709_s20_qp_33 Q: 9

(a)	The complex numbers u and w are such that
	u - w = 2i and $uw = 6$.
	Find u and w , giving your answers in the form $x + iy$, where x and y are real and exact. [5]

0.
40

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities

$$|z-2-2i| \le 2$$
, $0 \le \arg z \le \frac{1}{4}\pi$ and $\operatorname{Re} z \le 3$. [5]

320.9709 w 20 qp 31 Q: 2

On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z| \ge 2$ and $|z - 1 + i| \le 1$.

(a)

 $321.\ 9709_w20_qp_31\ \ Q:\ 7$

Verify that $-1 + \sqrt{5}i$ is a root of the equation $2x^3 + x^2 + 6x - 18 = 0$.	[3]
	.
	1
-00	

(b)

Find the other roots of this equation.	[4]
	. 0
AV.	
10.0	
•••	

 $322.\ 9709_w20_qp_32\ Q:\ 6$

The complex number u is defined by

$$u = \frac{7 + i}{1 - i}.$$

(a)	Express u in the form $x + iy$, where x and y are real.	[3]
		•••••
		••••••

(b) Show on a sketch of an Argand diagram the points A, B and C representing u, 7 + i and 1 - i respectively. [2]

$\tan^{-1}\left(\frac{4}{3}\right) = \tan^{-1}\left(\frac{1}{7}\right) + \frac{1}{4}\pi.$	[3]
	D
	,

 $323.\ 9709_m19_qp_32\ Q:\ 7$

(a) Showing all working and without using a calculator, solve the equation

$(1+i)z^2 - (4+3i)z + 5 + i = 0.$
Give your answers in the form $x + iy$, where x and y are real. [6]
407
2
60
•••

(b) The complex number u is given by

$$u = -1 - i$$
.

On a sketch of an Argand diagram show the point representing u. Shade the region whose points represent complex numbers satisfying the inequalities |z| < |z - 2i| and $\frac{1}{4}\pi < \arg(z - u) < \frac{1}{2}\pi$.

(i)

 $324.\ 9709_s19_qp_31\ Q:\ 10$

Throughout this question the use of a calculator is not permitted.

The complex number $(\sqrt{3}) + i$ is denoted by u.

Express u in the form $re^{1\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$, giving the exact values of r and or otherwise state the exact values of the modulus and argument of u^4 .	9. Hence [5]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

(ii)	Verify that u is a root of the equation $z^3 - 8z + 8\sqrt{3} = 0$ and state the other complex root of this equation. [3]
(iii)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $ z - u \le 2$ and $\text{Im } z \ge 2$, where $\text{Im } z$ denotes the imaginary part of z . [5]

 $325.\ 9709_s19_qp_32\ Q:\ 5$

Throughout this question the use of a calculator is not permitted.

It is given that the complex number $-1 + (\sqrt{3})i$ is a root of the equation

$$kx^3 + 5x^2 + 10x + 4 = 0,$$

where k is a real constant.

(i)	Write down another root of the equation.	[1]
		
(ii)	Find the value of k and the third root of the equation.	[6]
		, •••••••
		,
		•
		•

 $326.\ 9709_s19_qp_33\ Q{:}\ 8$

Throughout this question the use of a calculator is not permitted.

The complex number u is defined by

$$u = \frac{4i}{1 - (\sqrt{3})i}.$$

(i)	Express u in the form $x + iy$, where x and y are real and exact.	[3]
	**	

(ii)	Find the exact modulus and argument of u .	[2]
		0.
(iii)	On a sketch of an Argand diagram, shade the region whose points represent con	
	satisfying the inequalities $ z < 2$ and $ z - u < z $.	[4]
	10 .	
	00	
	••	

 $327.\ 9709_w19_qp_31\ Q:\ 10$

using a calculator, function a and b are	real and exact.	u. Give your answers	in the form $a + ib$, whe
•••••	•••••	•••••	•••••
•••••	•••••		
•••••	•••••		
		10	
•••••	•••••		
••••••			
	1		
		P	
	40		
	A'O'		
<u>/</u>		•••••	
•••••			

(b) On a sketch of an Argand diagram shade the region whose points represent complex numbers z satisfying the inequalities $|z-3-i| \le 3$, $\arg z \ge \frac{1}{4}\pi$ and $\operatorname{Im} z \ge 2$, where $\operatorname{Im} z$ denotes the imaginary part of the complex number z.

Additional Page

If you use the following lined page to complete the answer(s) to must be clearly shown.	o any question(s), the question number(s)
	30
	80,
<u></u>	
000	

 $328.\ 9709_w19_qp_32\ Q:\ 7$

				_
(a)	Find the complex	number z	satisfying	the equation

$$z + \frac{\mathbf{i}z}{z^*} - 2 = 0,$$

where z^* denotes the complex conjugate of z. Give your answer in the fe	orm $x + iy$, where x and
y are real.	[5]
♦. €	
-50	
**	
<u>**</u>	

(b) (i) On a single Argand diagram sketch the loci given by the equations |z - 2i| = 2 and Im z = 3, where Im z denotes the imaginary part of z. [2]

329. 9709_w19_qp_33 Q: 6

Throughout this question the use of a calculator is not permitted.

The complex number with modulus	1 and argument $\frac{1}{3}\pi$ is denoted by w
---------------------------------	---

(i)	Express w in the form $x + iy$, where x and y are real and exact.	[1]
		20
		9

The complex number 1+2i is denoted by u. The complex number v is such that |v|=2|u| and $\arg v=\arg u+\frac{1}{3}\pi$.

(ii) Sketch an Argand diagram showing the points representing u and v. [2]

(iii)	Explain why v can be expressed as $2uw$. Hence find v , giving your answer in the form $a + ib$, where a and b are real and exact. [4]
	<u> </u>
	**

 $330.\ 9709_m18_qp_32\ Q:\ 9$

The complex number 1 + 2i is denoted by u.

(i)	It is	given that u is a root of the equation $2x^3 - x^2 + 4x + k = 0$, where k is a constant.	
	(a)	Showing all working and without using a calculator, find the value of k .	[3]
	(b)	Showing all working and without using a calculator, find the other two roots of this equat	ion. [4]
		0.0	ָניד.]
			•••••
		4	
			•••••
			•••••

	
(11)	On an Argand diagram sketch the locus of points representing complex numbers z satisfying the equation $ z - u = 1$. Determine the least value of arg z for points on this locus. Give your answer in radians correct to 2 decimal places. [4]
	: 39
	Co

 $331.\ 9709_s18_qp_31\ \ Q{:}\ 7$

(i) Showing all working and without using a calculator, solve the equation $z^2 + (2\sqrt{6})z + 8 = 0$ giving your answers in the form $x + iy$, where x and y are real and exact. [3]

(ii) Sketch an Argand diagram showing the points representing the roots. [1

PapaCambridge

,	The points representing the roots are A and B , and O is the origin. Find angle AOB .
	Prove that triangle AOB is equilateral.
	Trove that triangle 110 B to equilibrium.
	**

 $332.\ 9709_s18_qp_32\ Q:\ 7$

Throughout this question the use of a calculator is not permitted.

The complex numbers $-3\sqrt{3} + i$ and $\sqrt{3} + 2i$ are denoted by u and v respectively.

Find, in the							,
•••••					•••••		
						• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	•••••			••••••		 <u></u>
•••••					W		
						,	
				42			
••••••	•••••	••••••••	1			•••••	 ••••••
						•••••	
			A	F.			
		0	Y				
••••••	_	00			•••••	•••••	
•••••							
44.1		7					
**		V			••••••		 ••••••
			,			•••••	 ••••••
						• • • • • • • • • • • • • • • • • • • •	

(ii) On a sketch of an Argand diagram with origin O, show the points A and B representing the complex numbers u and v respectively. Prove that angle $AOB = \frac{2}{3}\pi$. [3]

 $333.\ 9709_s18_qp_33\ Q:\ 9$

(a) Find the complex number z satisfying the equation

$3z - iz^* = 1 + 5i,$	
where z^* denotes the complex conjugate of z .	[4]
	•••••
	•••••
	••••••
	•••••
**	•••••
	••••••

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z which satisfy both the inequalities $|z| \le 3$ and $\operatorname{Im} z \ge 2$, where $\operatorname{Im} z$ denotes the imaginary part of z. Calculate the greatest value of $\operatorname{arg} z$ for points in this region. Give your answer in radians correct to 2 decimal places.

idoe
70

334. $9709_{\text{w}}18_{\text{qp}}31 \text{ Q: } 8$

S	Showing all necessary working, express the complex number $\frac{2+3i}{1-2i}$ in the form $re^{i\theta}$, where
a	and $-\pi < \theta \le \pi$. Give the values of r and θ correct to 3 significant figures.
••	
••	
••	
••	201
••	
• •	
••	
	•
••	
••	
• •	

(b) On an Argand diagram sketch the locus of points representing complex numbers z satisfying the equation |z - 3 + 2i| = 1. Find the least value of |z| for points on this locus, giving your answer in an exact form. [4]

idos	
	•••••
~0	•••••
40	•••••
A0'0'	••••••
	••••••
	•••••
	•••••
	•••••
	•••••

(a)

335. $9709_{w18}_{qp}_{32}$ Q: 9

(i)	Without using a calculator, express the complex number $\frac{2+6i}{1-2i}$ in the form $x+iy$, where x and y are real.
	10
(ii)	Hence, without using a calculator, express $\frac{2+6i}{1-2i}$ in the form $r(\cos\theta+i\sin\theta)$, where $r>0$
(H)	and $-\pi < \theta \le \pi$, giving the exact values of r and θ . [3]
(II)	and $-\pi < \theta \le \pi$, giving the exact values of r and θ .
(II)	and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ . [3]
(II)	and $-\pi < \theta \le \pi$, giving the exact values of r and θ . [3]
(11)	and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ .
(11)	and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ . [3]
(II)	and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ .
(II)	and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ .
•	and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ . [3
•	and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ . [3
•	and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ . [3

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying both the inequalities $|z - 3i| \le 1$ and $\text{Re } z \le 0$, where Re z denotes the real part of z. Find the greatest value of arg z for points in this region, giving your answer in radians correct to 2 decimal places. [5]

ail dole
XQ.
<i>2</i> 0
60

336. 9709_m17_qp_32 Q: 8

Throughout	this c	mestion	the	1156	of a	calcula	ator	is not	nermitted	
i ili vugilvut	инэ с	lucsuon	uic	usc	oi a	carcuia	ator	19 1100	permitted	•

	nowing all your working, verify that u is a root of the equation $p(z) = 0$.	[3
		Ø
	XO.,	
••••		
••••		
••••		
••••		•••••
) Fi	nd the other three roots of the equation $p(z) = 0$.	[7
) Fi	nd the other three roots of the equation $p(z) = 0$.	[7
 Fii	nd the other three roots of the equation $p(z) = 0$.	[7
 Fin	nd the other three roots of the equation $p(z) = 0$.	7]
 Fin	nd the other three roots of the equation $p(z) = 0$.	[7
 Fi: 	nd the other three roots of the equation $p(z) = 0$.	[7
 Fi: 	nd the other three roots of the equation $p(z) = 0$.	[7
	nd the other three roots of the equation $p(z) = 0$.	[7
	nd the other three roots of the equation $p(z) = 0$.	
	nd the other three roots of the equation $p(z) = 0$.	[7

 $337.\ 9709_s17_qp_31\ \ Q{:}\ 7$

Throughout this question the use of a calculator is not permitted.

	The complex	numbers u and	w are defined	by $u = -1 + 7$	i and $w = 3 + 4i$.
--	-------------	---------------	---------------	-----------------	----------------------

(1)	Showing all your working, find in the form $x + iy$, where x and y and y and y are y and y and y are y are y and y are y are y and y are y and y are y are y and y are y are y and y are y and y are y are y and y are y are y and y are y and y are y are y and y are y are y and y are y and y are y are y and y are y and y are y and y are y are y and y are y and y are y and y are y and y are y are y and y are y are y and y are y and y are y are y and y are y and y are y and y are y and y are y and y are y are y and y are y are y and y are y and y are y are y and y are y are y and y are y and y are y are y and y are y	
	$u-2w$ and $\frac{u}{w}$.	[4]
	W	
		.0
		10
		. 0
	40	
In a	on Argand diagram with origin O , the points A , B and C represent t	he complex numbers $\mu_{-}w$ and
и –	2w respectively.	ne complex numbers u, w une
(ii)	Prove that angle $AOB = \frac{1}{4}\pi$.	[2]
	••	

CHAPTER 9. COMPLEX NUMBERS

iii)	State fully the geometrical relation between the line segments <i>OB</i> and <i>CA</i> . [2]
	20
	10.0

 $338.\ 9709_s17_qp_32\ Q:\ 6$

Throughout this question the use of a calculator is not permitted.

The complex number 2 - i is denoted by u.

It is given that u is a root of the equation x^3 real. Find the values of a and b .	$+ax^2 - 3x + b = 0$, where the constants a and b are [4]
	<i></i>

(ii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying both the inequalities |z - u| < 1 and |z| < |z + i|. [4]

339. 9709_s17_qp_33 Q: 11

(a)

Throughout this question the use of a calculator is not permitted.

The complex numbers z and w satisfy the equations
z + (1 + i)w = i and $(1 - i)z + iw = 1$.
Solve the equations for z and w , giving your answers in the form $x + iy$, where x and y are real. [6]

	c = 2AB and a r in the form x				number z re ct.	presented by	y C, giv
••••••					•••••		•••••
					•••••••••••••••••••••••••••••••••••••••		
				•			
					9		
				<u>O</u>			
		4					
		-	Ç,				
		2					
.44							

 $340.\ 9709_w17_qp_31\ \ Q:\ 7$

(a)

The complex number u is given by $u = 8 - 15i$. Showing all necessary working, find the two square roots of u . Give answers in the form $a + ib$, where the numbers a and b are real and exact [5]
.
29
C

(b) On an Argand diagram, shade the region whose points represent complex numbers satisfying both the inequalities $|z-2-i| \le 2$ and $0 \le \arg(z-i) \le \frac{1}{4}\pi$. [4]

341. 9709_w17_qp_32 Q: 7

Throughout this question the use of a calculator is not permitted.

The complex number $1 - (\sqrt{3})i$ is denoted by u.

(i)	Find the modulus and argument of u .	[2]
(ii)	Show that $u^3 + 8 = 0$.	[2,
	100	

(iii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying both the inequalities $|z - u| \le 2$ and $\text{Re } z \ge 2$, where Re z denotes the real part of z.

[41

 $342.\ 9709_m16_qp_32\ Q:\ 10$

- (a) Find the complex number z satisfying the equation $z^* + 1 = 2iz$, where z^* denotes the complex conjugate of z. Give your answer in the form x + iy, where x and y are real. [5]
- (b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities $|z + 1 3i| \le 1$ and $\text{Im } z \ge 3$, where Im z denotes the imaginary part of z. [4]
 - (ii) Determine the difference between the greatest and least values of arg z for points lying in this region. [2]

 $343.\ 9709_s16_qp_31\ Q:\ 10$

- (a) Showing all your working and without the use of a calculator, find the square roots of the complex number $7 (6\sqrt{2})i$. Give your answers in the form x + iy, where x and y are real and exact. [5]
- (b) (i) On an Argand diagram, sketch the loci of points representing complex numbers w and z such that |w 1 2i| = 1 and $\arg(z 1) = \frac{3}{4}\pi$. [4]
 - (ii) Calculate the least value of |w-z| for points on these loci. [2]

 $344.\ 9709_s16_qp_32\ Q{:}\ 10$

- (a) Showing all necessary working, solve the equation $iz^2 + 2z 3i = 0$, giving your answers in the form x + iy, where x and y are real and exact. [5]
- (b) (i) On a sketch of an Argand diagram, show the locus representing complex numbers satisfying the equation |z| = |z 4 3i|. [2]
 - (ii) Find the complex number represented by the point on the locus where |z| is least. Find the modulus and argument of this complex number, giving the argument correct to 2 decimal places.

 $345.\ 9709_s16_qp_33\ Q:\ 9$

Throughout this question the use of a calculator is not permitted.

The complex numbers -1 + 3i and 2 - i are denoted by u and v respectively. In an Argand diagram with origin O, the points A, B and C represent the numbers u, v and u + v respectively.

- (i) Sketch this diagram and state fully the geometrical relationship between OB and AC. [4]
- (ii) Find, in the form x + iy, where x and y are real, the complex number $\frac{u}{y}$. [3]
- (iii) Prove that angle $AOB = \frac{3}{4}\pi$. [2]

 $346.\ 9709_w16_qp_31\ \ Q:\ 9$

Throughout this question the use of a calculator is not permitted.

- (a) Solve the equation $(1+2i)w^2 + 4w (1-2i) = 0$, giving your answers in the form x + iy, where x and y are real. [5]
- (b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities $|z 1 i| \le 2$ and $-\frac{1}{4}\pi \le \arg z \le \frac{1}{4}\pi$. [5]

347. 9709_w16_qp_33 Q: 7

Throughout this question the use of a calculator is not permitted.

The complex number z is defined by $z = (\sqrt{2}) - (\sqrt{6})i$. The complex conjugate of z is denoted by z^* .

(i) Find the modulus and argument of z.

- [2]
- (ii) Express each of the following in the form x + iy, where x and y are real and exact:
 - (a) $z + 2z^*$;
 - **(b)** $\frac{z^*}{iz}$

[4]

(iii) On a sketch of an Argand diagram with origin O, show the points A and B representing the complex numbers z^* and iz respectively. Prove that angle AOB is equal to $\frac{1}{6}\pi$. [3]

 $348.\ 9709_s15_qp_31\ Q:\ 8$

The complex number w is defined by $w = \frac{22 + 4i}{(2 - i)^2}$.

- (i) Without using a calculator, show that w = 2 + 4i. [3]
- (ii) It is given that p is a real number such that $\frac{1}{4}\pi \le \arg(w+p) \le \frac{3}{4}\pi$. Find the set of possible values of p.
- (iii) The complex conjugate of w is denoted by w^* . The complex numbers w and w^* are represented in an Argand diagram by the points S and T respectively. Find, in the form |z a| = k, the equation of the circle passing through S, T and the origin.

 $349.\ 9709_s15_qp_32\ Q\hbox{:}\ 7$

The complex number u is given by $u = -1 + (4\sqrt{3})i$.

- (i) Without using a calculator and showing all your working, find the two square roots of u. Give your answers in the form a + ib, where the real numbers a and b are exact. [5]
- (ii) On an Argand diagram, sketch the locus of points representing complex numbers z satisfying the relation |z u| = 1. Determine the greatest value of arg z for points on this locus. [4]

 $350.\ 9709_s15_qp_33\ Q:\ 8$

The complex number 1 - i is denoted by u.

(i) Showing your working and without using a calculator, express

$$\frac{1}{u}$$

in the form x + iy, where x and y are real.

[2]

- (ii) On an Argand diagram, sketch the loci representing complex numbers z satisfying the equations |z - u| = |z| and |z - i| = 2.
- (iii) Find the argument of each of the complex numbers represented by the points of intersection of the two loci in part (ii).

 $351.\ 9709_w15_qp_31\ \ Q\colon 9$

The complex number 3 - i is denoted by u. Its complex conjugate is denoted by u^* .

- (i) On an Argand diagram with origin O, show the points A, B and C representing the complex numbers u, u^* and $u^* - u$ respectively. What type of quadrilateral is *OABC*?
- (ii) Showing your working and without using a calculator, express $\frac{u^*}{u}$ in the form x + iy, where x and y are real.
- (iii) By considering the argument of $\frac{u^*}{u}$, prove that

$$\tan^{-1}(\frac{3}{4}) = 2\tan^{-1}(\frac{1}{3}).$$
 [3]

 $352.\ 9709_w15_qp_33\ Q:\ 9$

- (a) It is given that (1+3i)w = 2+4i. Showing all necessary working, prove that the exact value of $|w^2|$ is 2 and find $arg(w^2)$ correct to 3 significant figures. [6]
- (b) On a single Argand diagram sketch the loci |z| = 5 and |z 5| = |z|. Hence determine the complex numbers represented by points common to both loci, giving each answer in the form $re^{i\theta}$. [4]

